TG spécialité (révision) I) L'étiquette d'un flacon contenant un alcool est en partie illisible. La seule information encore déchiffrable est sa masse molaire : M = 60,0 g.mol ⁻¹ . a) Quelle est la formule générale d'un alcool ?		
b) Déterminer la formule brute de cet alcool.		
c) Données les formues développées des différents alcools possibles et nommez-les.		
d) Un échantillon de cet alcool est oxydé pour pouvoir l'identifier. Quelques gouttes du produit obtenu après oxydation ménagée de cet alcool donnent un test positif à la 2,4-DNPH(2,4 - dinitrophénylhydrazine) . Que peut -on en déduire? Ce test suffit-il à identifier l'alcool inconnu? Pourquoi ?		
e) Un test à la liqueur de Fehling avec le produit de l'oxydation de l'alcool donne un résultat négatif. Conclure.		
f) Quel(s) autre(s) test(s) confirmerai(en)t le résultat précédent ?		
II) Compléter les équations ci-dessous : CH₄ + O₂ → CO₂ + H₂O		
$C_{10}H_{22} + O_2 \rightarrow CO_2 + H_2O$		
C H + O₂ → 9 CO₂ + 10 H₂O		
$C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$		
C₄H ₉ OH + O ₂ → CO ₂ + H ₂ O		
$2 C HOH + O_2 \rightarrow 4 CO_2 + 5 H_2O$		
III) a) <u>Noms et formules des composés ioniques</u> 1) Donner la formule des solides ioniques constitués : - d'ions cuivre Cu ²⁺ et d'ions hydroxyde HO ⁻ : - d'ions calcium Ca ²⁺ et d'ions nitrate NO ₃ ⁻ :		
2) Le nom d'un solide ionique étant constitué du nom de l'anion suivi de la préposition « de » et du nom du cation, donner le nom de chacun des solides ioniques précédents.		
3) Quelle est la nature des interactions qui assurent la cohésion au sein d'un solide ionique ?		
b) <u>Les étapes de la dissolution</u> Nommer les trois étapes de la dissolution d'un composé ionique dans l'eau, et explique chaque étape par une phrase courte.		

eaux et en jardinage. volume $V = 250 \text{ mL}$.	m est un solide ioniqu On pèse 4,28 g de d	ue blanc de formule Al ₂ (SO ₄) ₃ . On l'utilise pour le traitement des ce solide en poudre avec lequel on réalise une solution aqueuse de
1) Quelle est la conce	entration c de solute a	apporté dans la solution ?
2. Écrire l'équation de	e la dissolution dans l	l'eau.
3. Exprimer et calcule	e les concentrations d	des ions en solution.
4) proposer un proto	ocole expérimental de	e préparation de cette solution.
Données : Masses n	nolaires (g.mol ⁻¹) :	Cuivre 63,5 ; Hydrogène 1,0 ; Fer 55,8 ; Soufre 32,1 ; Aluminium 27,0 ; Oxygène 16,0 ; Carbone 12,0
IV) 1) Qu'est-ce qu't	un alcane ? Quelle es	st la formule brute générale des alcanes ?
2) Un alcane a une r	masse molaire de 72	g.mol ⁻¹ : détermine sa formule brute.
Sous forme de ta		res dont les températures d'ébullition sont 9,5°C, 28,0°C et 36,1°C. haque isomère son nom, sa représentation topologique et sa on raisonnement).
•		n de substitution), on transforme l'isomère le plus ramifié en alcool : éveloppée de l'alcool obtenu ?

Masses molaires (g.mol⁻¹): Carbone: 12,0 Oxygène: 16,0 Hydrogène: 1,0